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Let E be a real Banach space.
Definition 1. (|Phe93, Example 2.26]) We define the duality mapping

D:E= E,
D(z) = {2 € E*: ||z]| = [|2"|| and (2%, 2) = [|z"| ||z[}.

Note. We will only use this mapping for unit vectors, so we may as well consider its
restriction to the unit spheres, where

D : Sg = Sg~,
D'(z) = {z* € Sg~: (z*,2) = 1}.

Definition 2. (|[Phe93, Definition 2.36]) The norm ||-|| on E is said to be

a) Strictly convex (or rotund) if there is no line segments in the unit sphere Sg.

b) Smooth if for each z € S the duality mapping is single-valued.

I decided to prove the following since it was not obvious to me
Lemma 3. For every point x € E, the set D(x) is nonempty.

Proof. Fix x € E and consider the one-dimensional subspace
span{z} = {Az: A € R}

Define ¢ : span{z} — R by £(\z) = Az
The functional £ is linear and, since it acts on a finite-dimensional space, it is also
continuous. The norm of £ is

el = max { (& 20 ) (6 =155 ) b = (el = el = o

The Hahn-Banach theorem allows us to extend £ to a continuous linear functional
#* € E* such that ||2*|| = [|¢]| = [|z]| and (z*,2) = (¢,2) = ||2[|* = || [|2*[|. Thus
x* € D(x) and D(x) is nonempty. O
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Exercise 1. (|Phe93, Exercise 2.37]) Prove that:

a) If the norm in E is such that its dual norm in E* is rotund (resp. smooth), then
it is itself smooth (resp. rotund).

b) The norm in F is rotund iff every convex subset of E has at most one point of least
norm.

c¢) Norms in Hilbert spaces are both smooth and rotund, but the norms in ¢ and I*
are neither.

d) The norm in E is strictly convex iff ||z 4+ y| < [|z| + |ly|| whenever x and y are
linearly independent.

Proof.

1. 1) First, let the dual norm |-||* be rotund and assume that ||| is not
smooth.

Fix z € Sg. Since D(z) is nonempty (by lemmal3)) and since ||-|| is not smooth,
then there exist two different functionals x*, y* € D(x), such that

(x*, ) = (y*,x) = 1.

We will show that the segment [z*,y*] is contained in Sg+, i.e. that the dual
norm is not rotund.

Fix any ¢t € (0,1) and define z* = tz* + (1 — t)y*. We only need to show that
27 = 1.

By the triangle inequality, we have
1270 = llta™ + A =)y <tz + A=) ly*| =t + (1 —#) = 1.
For the reverse inequality, note that
1275l = (% 2) = t (2% 2) + (1= 1) (", 2) =t + (1 — 1) = 1,
thus ||z*|] = 1. Hence [z*,y*] is contained in Sg- and the dual space is not

smooth. The obtained contradiction proves that the norm in E is rotund.

Now let the dual norm |[|-||* be smooth and assume that ||-|| is not rotund. Then
there exist points x,y € Sg such that the while segment [z, y] is contained in
SE.

Fix t € (0,1) and define z := tx + (1 — t)y € Sx. Denote by J : E — E**
the canonical embedding into the double-dual. By lemma [3] there exists a
functional z* € E*, such that

(J(2),2") = (z",2) = 1.



2.

3.

Because the dual norm |[|-||* is smooth, we cannot have (J(z),2*) = (z*,2) =1
or (J(y),z*) = (¢*,y) = 1 and since ||z*|| = 1, necessarily

(z",z) <1land (z",y) < 1.

If follows that
1=("2)=t("2)+ (1 —-t) "y <t+(1—-t) =1,
which is a contradiction. Hence |[|-|| is rotund.
( = ) Let the norm in E be rotund and let C' C E be a (potentially empty)

convex set. We will prove that C contains at most one point of least norm.

If C is empty or otherwise contains no element of least norm, trivially contains at
most one point of least norm.

Now let C contain at least one element x € C of least norm. Assume that y € C
is another element of least norm. Necessarily ||z| = ||y||.

Fix ¢t € (0,1) and define z := tz + (1 — t)y. Since C is convex, it contains z. Since
x and y are elements of least norm, we have ||z|| > ||z||. By the triangle inequality,

121l = [ltz + (1 = )yl < tljzfl + (1 =) [lyl] = [l=]

thus [|z]] = |z

This implies that the entire segment [x,y] are elements of least norm in C. Hence
the segment [z, y| is contained in the sphere ||z|| Sg, which contradicts the rotundity
of the norm ||||.

Hence C' contains at most one element of least norm.
(<= ) Let every convex set C' C E have at most one element of least norm.

Assume that the norm ||-|| is not rotund. Then the unit sphere Sk contains a line
segment [x,y|,z # y. The set [z,y] is compact and, by the Weierstrass extreme
value theorem, the norm attains its minimum on the segment in a point z € [z, y].
Since the segment is also convex and we assumed that convex sets have at most
one element of least norm, it follows that this element z is unique.

Then for any point s € [z,y],s # z, we have ||s|| > ||z]| = 1, thus s cannot be an
element of the unit sphere. The obtained contradiction shows that the norm ||-|| is
rotund.

1) Let E be a Hilbert space, i.e. the norm is generated by an inner product and,
due to Riesz’s theorem, we identify the space E with its continuous dual E*.

To prove that E is rotund, choose z,y € Sg,x # y. We will show that the
segment [z, y] is not contained in Sg.

If x and y are linearly dependent, necessarily y = —z and all non-trivial convex
combinations of z and y are contained in the open unit ball, hence [z,y] € Sg.



Not let x and y be linearly independent. By the Cauchy-Bunyakovsky-Schwarz
inequality, we have

(z,y) < [{z, )| <] lyll = 1. (1)
Fix t € (0,1) and let z :=tx + (1 — t)y. We will show that z & Sg. Indeed,

1201 = (z,2) = £ ||| + t(1 — &) (@, 9) + (L — )t (g, 2) + (1 = 1) [|y]|* =
=24 (1—t)> 4+ 2t(1 —t) (z,y) <

@
gt2—|—(l—t)2+2t(1—t):

=t?4+1 -2+t +2t—t>=1.

Thus ||2]|* <1 and ||z]| <1 and z & Sg.

In both cases, no interior point of the segment [z, y| is contained in Sg, hence
the norm in FE is rotund.

Since we identify E with its dual, the norm in E* is also rotund and by
the norm in F is also smooth.

Consider the space ¢ of all real sequences that converge to zero equipped with

the uniform norm

|2l = sup | .
(A

Note that the dual space of cg is (isometrically isomorphic to) the space I' of
absolutely summable sequences with norm

Izl =l
i

Let {e,}>2, be the canonical basis of ¢g, i.e. the coordinates el
given by the Dirac delta function, e,(f) = 0in.

of e, are

For every natural n > 1, define x,, to be the same as e, except that the first
coordinate of z,, is always 1.

The corresponding norms of e, are all equal to 1 and the norms of z,, are

[Znlle, =1 [Znlp = 2.

For every n we have
<617xn> = <€n7xn> =1,

hence Jg,(zy) has at least two elements e; and e, and the norm in ¢y is not
smooth.



Given that {z1,x9,...} C S, consider the convex combinations of z9 and x3:

trog + (1 —t)xs = (1,t,(1 —¢),0,0,...).

Evidently tzg 4+ (1 — t)xs € S, for every ¢t € (0,1), hence the norm in ¢q is
not rotund.

The contrapositions to the statements in @ say that if E is not rotund (resp.
smooth), then the dual space E* is not smooth (resp. rotund). Thus I! is
neither smooth or rotund as the dual of cg.

4. We will prove that E is rotund if and only if

|z +y| = l|z|| + ||ly|| = = and y are linearly dependent. (2)

(=) Let E be rotund let x,y € E be distinct vectors such that
lz +yll = [l + llyll - (3)
If either of them is the zero vector, then they are trivially linearly dependent.

Assume that both z and y are nonzero and define

_ @ _ v O
o i o+ ol

Equation implies that

=l fe+yll ==l llyll

1—t=1— - — .
lz + vl lz +yll |z +y|

Since both ¢ and 7 are in Sg, by rotundity, their convex combination
v=t&+ (1 —1t)n

should not be contained in Sg unless £ = 7.

Calculating the norm, we obtain

vl = llt& + (1 =)l =

]| € HMHH
fet+yl " Tw+yl
r+y H .
o+ yl
hence v € Sg. Thus £ =n and x = %y, so x and y are linearly dependent.



( <= ) Let eq. hold and fix z,y € Sg,t € (0,1). Define z := tx + (1 — t)y.
First, assume that the vectors tz and (1 — t)y satisfy the left part of eq. (2)), i.e.

Izl = [tz + (1 = )yl = tllzl + A =) [ly] = 1.

This does not refute rotundity since x and y are not necessarily distinct. It follows
from eq. that tx and (1 — t)y are linearly dependent, hence x and y are also
linearly dependent. Since x and y both have unit norm, either y =z or y = —zx.

If we assume that y = —x, then
[zl = Itz + (1 = )yl = (2t = 1) [|l]| = 2¢ - 1,

which is only possible if ¢ = 1 since ||z|| = 1. But ¢ is strictly less than 1.
Hence y # —x and the only remaining possibility is that y = z.

Now assume that the vectors ¢tz and (1 — t)y do not satisfy the left part of eq. .
This implies ||z]| < 1. Thus = and y are necessarily distinct, but z is not contained
in the unit sphere and the segment [x,y] is not contained in Sg.

We have shown that z,y € Sg implies that either y = x or that the segment [z, 3]
is not contained in Sg, thus the norm in F is rotund.
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