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Let E be a real Banach space.

Definition 1. ([Phe93, Example 2.26]) We define the duality mapping

D : E ⇒ E∗,

D(x) := {x∗ ∈ E∗ : ‖x‖ = ‖x∗‖ and 〈x∗, x〉 = ‖x∗‖ ‖x‖}.

Note. We will only use this mapping for unit vectors, so we may as well consider its
restriction to the unit spheres, where

D′ : SE ⇒ SE∗ ,

D′(x) := {x∗ ∈ SE∗ : 〈x∗, x〉 = 1}.

Definition 2. ([Phe93, Definition 2.36]) The norm ‖·‖ on E is said to be

a) Strictly convex (or rotund) if there is no line segments in the unit sphere SE .

b) Smooth if for each x ∈ SE the duality mapping is single-valued.

I decided to prove the following since it was not obvious to me

Lemma 3. For every point x ∈ E, the set D(x) is nonempty.

Proof. Fix x ∈ E and consider the one-dimensional subspace

span{x} = {λx : λ ∈ R}.

Define ξ : span{x} → R by ξ(λx) = λ‖x‖2.
The functional ξ is linear and, since it acts on a finite-dimensional space, it is also

continuous. The norm of ξ is

‖ξ‖ = max

{〈
ξ,

x

‖x‖

〉
,

〈
ξ,− x

‖x‖

〉}
= max{‖x‖ ,−‖x‖} = ‖x‖ .

The Hahn-Banach theorem allows us to extend ξ to a continuous linear functional
x∗ ∈ E∗ such that ‖x∗‖ = ‖ξ‖ = ‖x‖ and 〈x∗, x〉 = 〈ξ, x〉 = ‖x‖2 = ‖x‖ ‖x∗‖. Thus
x∗ ∈ D(x) and D(x) is nonempty.
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Exercise 1. ([Phe93, Exercise 2.37]) Prove that:

a) If the norm in E is such that its dual norm in E∗ is rotund (resp. smooth), then
it is itself smooth (resp. rotund).

b) The norm in E is rotund iff every convex subset of E has at most one point of least
norm.

c) Norms in Hilbert spaces are both smooth and rotund, but the norms in c0 and l1

are neither.

d) The norm in E is strictly convex iff ‖x+ y‖ < ‖x‖ + ‖y‖ whenever x and y are
linearly independent.

Proof. 1. 1) First, let the dual norm ‖·‖∗ be rotund and assume that ‖·‖ is not
smooth.

Fix x ∈ SE . SinceD(x) is nonempty (by lemma 3) and since ‖·‖ is not smooth,
then there exist two different functionals x∗, y∗ ∈ D(x), such that

〈x∗, x〉 = 〈y∗, x〉 = 1.

We will show that the segment [x∗, y∗] is contained in SE∗ , i.e. that the dual
norm is not rotund.

Fix any t ∈ (0, 1) and define z∗ := tx∗+(1− t)y∗. We only need to show that
‖z∗‖ = 1.

By the triangle inequality, we have

‖z∗‖ = ‖tx∗ + (1− t)y∗‖ ≤ t ‖x∗‖+ (1− t) ‖y∗‖ = t+ (1− t) = 1.

For the reverse inequality, note that

‖z∗‖ ≥ 〈z∗, x〉 = t 〈x∗, x〉+ (1− t) 〈y∗, x〉 = t+ (1− t) = 1,

thus ‖z∗‖ = 1. Hence [x∗, y∗] is contained in SE∗ and the dual space is not
smooth. The obtained contradiction proves that the norm in E is rotund.

2) Now let the dual norm ‖·‖∗ be smooth and assume that ‖·‖ is not rotund. Then
there exist points x, y ∈ SE such that the while segment [x, y] is contained in
SE .

Fix t ∈ (0, 1) and define z := tx + (1 − t)y ∈ SX . Denote by J : E → E∗∗

the canonical embedding into the double-dual. By lemma 3, there exists a
functional z∗ ∈ E∗, such that

〈J(z), z∗〉 = 〈z∗, z〉 = 1.
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Because the dual norm ‖·‖∗ is smooth, we cannot have 〈J(x), z∗〉 = 〈z∗, x〉 = 1
or 〈J(y), z∗〉 = 〈z∗, y〉 = 1 and since ‖z∗‖ = 1, necessarily

〈z∗, x〉 < 1 and 〈z∗, y〉 < 1.

If follows that

1 = 〈z∗, z〉 = t 〈z∗, x〉+ (1− t) 〈z∗, y〉 < t+ (1− t) = 1,

which is a contradiction. Hence ‖·‖ is rotund.

2. ( =⇒ ) Let the norm in E be rotund and let C ⊆ E be a (potentially empty)
convex set. We will prove that C contains at most one point of least norm.

If C is empty or otherwise contains no element of least norm, trivially contains at
most one point of least norm.

Now let C contain at least one element x ∈ C of least norm. Assume that y ∈ C
is another element of least norm. Necessarily ‖x‖ = ‖y‖.
Fix t ∈ (0, 1) and define z := tx+ (1− t)y. Since C is convex, it contains z. Since
x and y are elements of least norm, we have ‖z‖ ≥ ‖x‖. By the triangle inequality,

‖z‖ = ‖tx+ (1− t)y‖ ≤ t ‖x‖+ (1− t) ‖y‖ = ‖x‖ ,

thus ‖z‖ = ‖x‖.
This implies that the entire segment [x, y] are elements of least norm in C. Hence
the segment [x, y] is contained in the sphere ‖x‖SE , which contradicts the rotundity
of the norm ‖·‖.
Hence C contains at most one element of least norm.

(⇐= ) Let every convex set C ⊆ E have at most one element of least norm.

Assume that the norm ‖·‖ is not rotund. Then the unit sphere SE contains a line
segment [x, y], x 6= y. The set [x, y] is compact and, by the Weierstrass extreme
value theorem, the norm attains its minimum on the segment in a point z ∈ [x, y].
Since the segment is also convex and we assumed that convex sets have at most
one element of least norm, it follows that this element z is unique.

Then for any point s ∈ [x, y], s 6= z, we have ‖s‖ > ‖z‖ = 1, thus s cannot be an
element of the unit sphere. The obtained contradiction shows that the norm ‖·‖ is
rotund.

3. 1) Let E be a Hilbert space, i.e. the norm is generated by an inner product and,
due to Riesz’s theorem, we identify the space E with its continuous dual E∗.

To prove that E is rotund, choose x, y ∈ SE , x 6= y. We will show that the
segment [x, y] is not contained in SE .

If x and y are linearly dependent, necessarily y = −x and all non-trivial convex
combinations of x and y are contained in the open unit ball, hence [x, y] 6⊆ SE .
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Not let x and y be linearly independent. By the Cauchy-Bunyakovsky-Schwarz
inequality, we have

〈x, y〉 ≤ |〈x, y〉| < ‖x‖ ‖y‖ = 1. (1)

Fix t ∈ (0, 1) and let z := tx+ (1− t)y. We will show that z 6∈ SE . Indeed,

‖z‖2 = 〈z, z〉 = t2 ‖x‖2 + t(1− t) 〈x, y〉+ (1− t)t 〈y, x〉+ (1− t)2 ‖y‖2 =
= t2 + (1− t)2 + 2t(1− t) 〈x, y〉 <
(1)
< t2 + (1− t)2 + 2t(1− t) =
= t2 + 1− 2t+ t2 + 2t− t2 = 1.

Thus ‖z‖2 < 1 and ‖z‖ < 1 and z 6∈ SE .
In both cases, no interior point of the segment [x, y] is contained in SE , hence
the norm in E is rotund.

Since we identify E with its dual, the norm in E∗ is also rotund and by a),
the norm in E is also smooth.

2) Consider the space c0 of all real sequences that converge to zero equipped with
the uniform norm

‖x‖c0 := sup
i
|xi| .

Note that the dual space of c0 is (isometrically isomorphic to) the space l1 of
absolutely summable sequences with norm

‖x‖l1 :=
∑
i

|xi| .

Let {en}∞n=1 be the canonical basis of c0, i.e. the coordinates e(i)n of en are
given by the Dirac delta function, e(i)n := δi,n.

For every natural n ≥ 1, define xn to be the same as en except that the first
coordinate of xn is always 1.

The corresponding norms of en are all equal to 1 and the norms of xn are

‖xn‖c0 = 1 ‖xn‖l1 = 2.

For every n we have

〈e1, xn〉 = 〈en, xn〉 = 1,

hence Jc0(xn) has at least two elements e1 and en and the norm in c0 is not
smooth.
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Given that {x1, x2, . . .} ⊆ Sc0 , consider the convex combinations of x2 and x3:

tx2 + (1− t)x3 = (1, t, (1− t), 0, 0, . . .).

Evidently tx2 + (1 − t)x3 ∈ Sc0 for every t ∈ (0, 1), hence the norm in c0 is
not rotund.

The contrapositions to the statements in a) say that if E is not rotund (resp.
smooth), then the dual space E∗ is not smooth (resp. rotund). Thus l1 is
neither smooth or rotund as the dual of c0.

4. We will prove that E is rotund if and only if

‖x+ y‖ = ‖x‖+ ‖y‖ =⇒ x and y are linearly dependent. (2)

( =⇒ ) Let E be rotund let x, y ∈ E be distinct vectors such that

‖x+ y‖ = ‖x‖+ ‖y‖ . (3)

If either of them is the zero vector, then they are trivially linearly dependent.

Assume that both x and y are nonzero and define

ξ :=
x

‖x‖
η :=

y

‖y‖
t :=

‖x‖
‖x+ y‖

Equation (3) implies that

1− t = 1− ‖x‖
‖x+ y‖

=
‖x+ y‖ − ‖x‖
‖x+ y‖

=
‖y‖
‖x+ y‖

.

Since both ξ and η are in SE , by rotundity, their convex combination

ν := tξ + (1− t)η

should not be contained in SE unless ξ = η.

Calculating the norm, we obtain

‖ν‖ = ‖tξ + (1− t)η‖ =

=

∥∥∥∥ ‖x‖ ξ‖x+ y‖
+
‖y‖ η
‖x+ y‖

∥∥∥∥ =

=

∥∥∥∥ x+ y

‖x+ y‖

∥∥∥∥ = 1,

hence ν ∈ SE . Thus ξ = η and x = ‖x‖
‖y‖y, so x and y are linearly dependent.
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( ⇐= ) Let eq. (2) hold and fix x, y ∈ SE , t ∈ (0, 1). Define z := tx + (1 − t)y.
First, assume that the vectors tx and (1− t)y satisfy the left part of eq. (2), i.e.

‖z‖ = ‖tx+ (1− t)y‖ = t ‖x‖+ (1− t) ‖y‖ = 1.

This does not refute rotundity since x and y are not necessarily distinct. It follows
from eq. (2) that tx and (1 − t)y are linearly dependent, hence x and y are also
linearly dependent. Since x and y both have unit norm, either y = x or y = −x.
If we assume that y = −x, then

‖z‖ = ‖tx+ (1− t)y‖ = (2t− 1) ‖x‖ = 2t− 1,

which is only possible if t = 1 since ‖z‖ = 1. But t is strictly less than 1.

Hence y 6= −x and the only remaining possibility is that y = x.

Now assume that the vectors tx and (1− t)y do not satisfy the left part of eq. (2).
This implies ‖z‖ < 1. Thus x and y are necessarily distinct, but z is not contained
in the unit sphere and the segment [x, y] is not contained in SE .

We have shown that x, y ∈ SE implies that either y = x or that the segment [x, y]
is not contained in SE , thus the norm in E is rotund.
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